Explicit Expanders with Cutoff Phenomena

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit expanders with cutoff phenomena

The cutoff phenomenon describes a sharp transition in the convergence of an ergodic finite Markov chain to equilibrium. Of particular interest is understanding this convergence for the simple random walk on a bounded-degree expander graph. The first example of a family of bounded-degree graphs where the random walk exhibits cutoff in total-variation was provided only very recently, when the aut...

متن کامل

Explicit Unique-Neighbor Expanders

We present a simple, explicit construction of an infinite family F of bounded-degree ’unique-neighbor’ expanders Γ; i.e., there are strictly positive constants α and , such that all Γ = (X,E(Γ)) ∈ F satisfy the following property. For each subset S of X with no more than α|X| vertices, there are at least |S| vertices in X \ S that are adjacent in Γ to exactly one vertex in S. The construction o...

متن کامل

Expanders that Beat the Eigenvalue Bound : Explicit

For every n and 0 < < 1, we construct graphs on n nodes such that every two sets of size n share an edge, having essentially optimal maximum degree n 1?+o(1). Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n 1+1=k+o(1) comparisons. 2. A k round selection algorithm using n 1+1=(2 k ?1)+o(1) comparisons. 3. A depth 2 superconcentrat...

متن کامل

An Explicit Construction of Quantum Expanders

Quantum expanders are a natural generalization of classical expanders. These objects were introduced and studied by [1, 3, 4]. In this note we show how to construct explicit, constant-degree quantum expanders. The construction is essentially the classical Zig-Zag expander construction of [5], applied to quantum expanders.

متن کامل

Expanders that Beat the Eigenvalue Bound: Explicit Construction

For every n and 0 < δ < 1, we construct graphs on n nodes such that every two sets of size n share an edge, having essentially optimal maximum degree n1−δ+o(1). Using known and new reductions from these graphs, we explicitly construct: 1. A k round sorting algorithm using n comparisons. 2. A k round selection algorithm using n −1)+o(1) comparisons. 3. A depth 2 superconcentrator of size n. 4. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2011

ISSN: 1083-6489

DOI: 10.1214/ejp.v16-869